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In the present work, we study the transient phenomena in magneto-thermoelastic model in the
context of the theory of generalized thermoelasticity GL model with variable thermal conductivity.
The numerical solutions for the displacement, temperature, and radial and hoop streasses in the
context of FEM are obtained. The boundary conditions for the mechanical and Maxwell’s stresses at
the internal and outer surfaces are considered. An application of an infinitely long annular cylinder
is investigated for the inner surface is traction free and subjected to thermal shock, while the outer
surface is traction free and thermally isolated. Finally, the displacement, incremental temperature,
the stress components are obtained and then presented graphically to show the influence of the
variables on the phenomena.
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1. INTRODUCTION

In recent years, more attentions have been made for the
theory thermal shock problem of generalized thermoelas-
ticity because of its utilitarian aspects in diverse fields,
especially, Engineering, Structures, Geology, Biology,
Geophysics, Acoustics, Physics, Plasma, etc. Duhamel1

and Neumann2 introduced the theory of uncoupled ther-
moelasticity. The theory of elasticity with nonuniform heat
which was in half-space subjected of thermal shock in
this context which known as the theory of uncoupled
thermoelasticity and the temperature is governed by a
parabolic partial differential equation in temperature term
only has been discussed.3 Biot4 introduced the theory of
classical thermoelasticity, the equation of motion is hyper-
bolic in nature, whereas the heat conduction equation is
parabolic in nature; the theory predicts a finite speed for
predominantly elastic disturbances but an infinite speed
for predominantly thermal disturbances, which are coupled

∗Author to whom correspondence should be addressed.

together. Obviously, this result is physically unrealistic,
so,5–11 made an experimental investigations conducted on
various solids, for example, have shown that heat pulses
do propagate with finite speed. These theories remove the
paradox of infinite speed of heat propagation inherent in
the conventional coupled dynamical theory of thermoelas-
ticity introduced by Biot.4 Lord and Shulman,12 have dis-
covered the theory which determines the finite speed for
the motion due to thermal field using one relaxation time.
By including temperature rate, Green and Lindsay13 vio-
lated the classical Fourier’s law of heat conduction when
the body under consideration has a center of symmetry.
This theory also predicts a finite speed of heat propagation
using two relaxation times. This implies that the thermal
wave propagates with infinite speed, a physically impossi-
ble result.
During the second half of twentieth century, nonisother-

mal problems of the theory of elasticity became increas-
ingly impact. This is due mainly to their many applications
in widely diverse fields. First, in the nuclear field, the
external high temperatures and temperature gradients
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originating inside nuclear reactors influence their design
and operations. Secondly, the high velocities of mod-
ern aircraft give rise to aerodynamic heating, which pro-
duces intense thermal stresses, reducing the strength of the
aircraft structure.14 Nowacki15 investigated the dynamic
problems of thermoelasticity. Some problems of thermoe-
lasticity are discussed.16�17 Dhaliwal and Sherief18 dis-
cussed three different models of thermoelasticity in an
alternative way including the anisotropic case.18 A survey
article of representative theories in the range of general-
ized thermoelasticity is due to Hetnarski and Ignaczak.19

Eraby and Suhubi20 studied wave propagation in a cylin-
der. Ignaczak21 studied a strong discontinuity wave and
obtained a decomposition theorem.22 Ezzat23 has also
obtained the fundamental solution for this theory. Many
problems have been solved in the context of the gener-
alized thermoelasticity by El-Maghraby and Yousef,24�25

Youssef et al.26 and Yousef.27–29 Noda30 investigated the
thermal stresses in materials with temperature-dependent
properties. Modern structural elements are often subjected
to temperature changes of such magnitude that their mate-
rial properties may no longer be regarded as having con-
stant values even in an approximate sense. The thermal and
mechanical properties of materials vary with temperature,
so that the temperature dependence of material properties
must be taken into consideration in the thermal stress anal-
ysis of these elements.31–33

In recent years, the theory of magneto-thermoelasticity
which deals the interactions among strain, temperature
and electromagnetic fields has drawn the attention of
many researchers because of its extensive uses in diverse
fields, such as Geophysics for understanding the effect
of the Earth’s magnetic field on seismic waves, damp-
ing of acoustic waves in a magnetic field, emission of
electromagnetic radiations from nuclear devices, develop-
ment of a highly sensitive superconducting magnetome-
ter, electrical power engineering, optics, etc. Knopoff34

and Chadwick35 studied these types of problems in the
beginning and developed by Kaliski and Petykiewicz.36

The generalized magneto-thermoelasticity in a perfectly
conducting medium is investigated.37 Baksi et al.38 illus-
trate magneto-thermoelastic problems with thermal relax-
ation and heat sources in a three dimensional infinite
rotating elastic medium. In Yousef and Abbas,39 the
influence of variable thermal conductivity, thermal shock
and relaxation time for an annular cylinder has been
discussed. Tianhu et al.40 studied the two-dimensional
generalized thermal shock problem for a half-space in
electromagneto-thermoelasticity. Abd-Alla et al.41 and
Abo-Dahab and Mohamed42 illustrated some problems in
magneto-thermoelasticity and viscosity. Abo-Dahab and
Abbas43 illustrated LS model on thermal shock problem
of generalized magneto-thermoelasticity for an infinitely
long annular cylinder with variable thermal conductiv-
ity. Recently, Refs. [44–47] studied other problems in
waves.

The present paper is devoted to estimate the influence of
relaxation time, magnetic field, thermal shock and variable
thermal conductivity, GL model of generalized thermoe-
lasticity is considerd under variable thermal conductivity
and magnetic field. We consider an infinitely long annular
cylinder whose inner surface is traction free and subjected
to thermal shock and magnetic field. The outer surface
is also traction free and thermally isolated. The medium
parameters quiescent initial state. The FEM is proposed
to obtain the displacement, temperature and the radial and
hoop stresses. Finally, the results obtained are represented
graphically.

2. GOVERNING EQUATIONS

The constitutive equations

�ij =
[
�ekk−�

(
1+ �1

�

�t

)
�

]
�ij +2	eij (1)

where
eij =

1
2

ui� j +uj� i� (2)

The Maxwell’s stress equation

�ij = 	e�Hihj +Hjhi−Hk ·hk�ij  (3)

The equation of motion is

�ji� j +Fi = �üi (4)

where
Fi = 
 �J × �B�i

which tends to

	ui� jj + 
�+	�uj� ij −�

(
1+ �1

�

�t

)
�� i+Fi = �üi (5)

wich reduces to

	
ur� rr +ur�zz+ur����+ 
�+	�
ur� rr +uz� rz+u�� r��

−�

(
1+ �1

�

�t

)
��r +Fr = �ür (6)

In r coordinate, Eq. (6) becomes

	ur� rr + 
�+	�ur� rr −�

(
1+ �1

�

�t

)
��r +Fr = �ür (7)

for slowly moving medium, the variation of magnetic field
and electric field are given by Maxwell’s equations as
the form

curl �h= �J � curl �E =−	e
�h� �E =−	e
 �̇u× �H�

div �h= 0� div �E = 0� (8)

�H = �Ho + �h
r� t�� �Ho = 
0�Ho�0�
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if the medium is unbounded, the current density �J is
obtained by the Ohm’s law as

�J = �

(
�E+ � �u

�t
× �B

)
(9)

The equation of heat conduction takes the form

K��kk = �Ce

(
1+ �o

�

�t

)
�̇+�To

(
1+ �o�

�

�t

)
ė (10)

which can be written in the form

K��kk =
K

k

(
1+ �o

�

�t

)
�̇+�To

(
1+ �o�

�

�t

)
ė (11)

where
�Ce =

K

k
(12)

We will use the mapping:48

� = 1
Ko

∫ �

0
K
�′�d�′ (13)

By differentiating Eq. (13) with respect to x� we obtain

Ko��i= K
����i (14)

By differentiating a gain Eq. (14) with respect to x� we
get

Ko��ii= �K
����i�i (15)

With the same manner, by differentiating the mapping with
respect to time, we have

Ko�̇ = K
���̇ (16)

Hence, the heat equation will take the form

��ii=
(
1+ �o

�

�t

)
�̇

k
+ �To

Ko

(
1+ �o�

�

�t

)
ė (17)

Now we will take the thermal conductivity as a function
of the temperature with linear form as follows:48

K = K
��= Ko
1+K1�� (18)

Then, we have from the last equation and the mapping the
following forms

� = �+ K1

2
�2 (19)

��i = �� i
1+K1�� (20)

and

� = −1+√1+2K1�

K1

(21)

Substituting from Eq. (21) into Eq. (5), we get


�+	�uj� ij +	ui� jj −�

(
1+ �1

�

�t

)

× ��i√
1+2K1�

+Fi = �üi (22)

The constituitive relation takes the form

�ij =
(
�ekk−�

(
1+ �1

�

�t

)

×
[−1+√1+2K1�

K1

])
�ij +2	eij (23)

3. FORMULATION OF THE PROBLEM

We consider an infinitely long annular cylinder whose
inner surface is traction free and subjected to a thermal
shock, while the outer surface also is traction free but ther-
mally isolated. We assume also that there is heat sources
acting in the medium. We use a cylindrical system of coor-
dinates 
r� �� z� with the z-axis lying along the axis of the
cylinder. Due to symmetry, the problem is one-dimensional
with all the functions considered depending on the radial
distance r and the time t where R1 ≤ r ≤ R2.

The displacement vector has the components

ur = u
r� t�� u�
r� t�= uz
r� t�= 0 (24)

The heat conduction Eq. (17) takes the form

� 2� =
(
1+ �o

�

�t

)
�̇

k
+ �To

Ko

(
1+ �o�

�

�t

)
ė (25)

where

� 2 = �2

�r2
+ 1

r

�

�r

The equation of motion has the form


�+2	+	eH
2
o �
�e

�r

− �√
1+2K1�

(
1+ �1

�

�t

)
��

�r
= �ü (26)

where

e = 1
r

�
ru�

�r

the constitutive equations take the forms

�rr = �e+2	
�u

�r
−�

(
1+ �1

�

�t

)

×
(−1+√1+2K1�

K1

)
(27)

��� = �e+2	
u

r
−�

(
1+ �1

�

�t

)

×
(−1+√1+2K1�

K1

)
(28)

�zz = �e−�

(
1+ �1

�

�t

)(−1+√1+2K1�

K1

)
(29)

�rz = ��r = �z� = 0 (30)

J. Comput. Theor. Nanosci. 11, 1–12, 2014 3



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

On the Numerical Solution of Thermal Shock Problem for Generalized Magneto-Thermoelasticity Abbas and Abo-Dahab

Fig. 1. Continued.
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Fig. 1. Effect of the variable conduction on u, �= � , �rr , ��� , �rr and � = �rr + �rr when �1 = 2�o = 0�08, Ho = 105.

The dimensionless variables used as follow

r ′ =
(
�+2	+	eH

2
o

�

)1/2
r

k

u′ =
(
�+2	+	eH

2
o

�

)1/2
u

k

t′ =
(
�+2	+	eH

2
o

�

)
t

k


� ′
o� �

′
1�=

(
�+2	+	eH

2
o

�

)

�o� �1�

k

q′ = k

koTo

(
�

�+2	+	eH
2
o

)1/2

q

R
′ =

(
�+2	+	eH

2
o

�

)1/2
R

k

� ′ = �

To
� � ′ = �

	
�∗′ = �∗

	
� K ′

1 = K1To

(31)

Using Eqs. (31), (25) and (26) take the following forms

� 2� =
(
1+ �o

�

�t

)
�̇+g

(
1+ �o�

�

�t

)
ė (32)

ë = � 2e−
(
1+ �1

�

�t

)

×
[

a√
1+2K1�

� 2�+ aK1


1+2K1��3/2

(
��

�r

)2]
(33)

�rr = �2 �u

�r
+ 
�2−2�

u

r
−b

(−1+√1+2K1�

K1

)
(34)

��� = 
�2−2�
�u

�r
+�2 u

r
−b

(−1+√1+2K1�

K1

)
(35)

�zz = 
�2−2�e−b

(−1+√1+2K1�

K1

)
(36)

where

b = �To
	

� g = �Tok

Ko

� �=
(
�+2	

	

)1/2

a= 	b

�+2	+	eH
2
o

We will use the boundary conditions on the internal sur-
face, r = R1 and the outer surface r = R2 which are
given by

J. Comput. Theor. Nanosci. 11, 1–12, 2014 5
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Fig. 2. Continued.
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Fig. 2. Variations of CT, LS and GL theories on u, �= � , �rr , ��� , �rr and � = �rr + �rr when �1 = 2�o = 0�08, Ho = 105.

(i) The internal surface r = R1 is subjected to a thermal
shock in the form

�
R� t�= �oM
t�

�
R� t�= �M
t�
(37)

where

�=
(
1+ K1

2
�o

)
�o (38)

(ii) The outer surface r = R2 we have not any heat flux.
We will use the generalized Fourier law of heat conduc-
tion, namely

qr + �o
�qr
�t

=−K
��
��

�r
(39)

By using Eq. (16), we have

qr + �o
�qr
�t

=−Ko

��

�r
(40)

After using the non-dimensional variables, the last equa-
tion will take the form

qr + �o
�qr
�t

=−��

�r
(41)

Now, by using the boundary condition at r =R2 which we
have qr = 0� then we get

��̄
R2� s�

�r
= 0 (42)

The mechanical boundary conditions:
The internal and the outer surfaces r = R1 and r = R2 is
traction free i.e.,


�rr + �rr �
R1� t�= 0


�rr + �rr �
R2� t�= 0
(43)

where,
�rr = 	eH

2
o e (44)

e = �u

�r
+ u

r
(45)

4. FINITE ELEMENT METHOD

A finite element scheme is used here to get the tempera-
ture and radial displacement. The Finite element method
is a powerful technique originally developed for numeri-
cal solution of complex problems in structural mechanics,
and it remains the method of choice for complex sys-
tems. A further benefit of this method is that it allows
physical effects to be visualized and quantified regard-
less of experimental limitations. On the other hand, the
finite element method in different generalized thermoe-
lastic problems has been applied by many authors (see
for instant Abbas et al.49–55). The finite element method

J. Comput. Theor. Nanosci. 11, 1–12, 2014 7
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Fig. 3. Continued.
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Fig. 3. Effect of the magnetic field on u, �= � , �rr , ��� , �rr and � = �rr + �rr when �1 = 2�o = 0�08, k1 =−0�5.

(FEM) in Refs. [31–33] is adopted due to its flexibility in
modeling layered structures and its capability in obtain-
ing full field numerical solution to investigate the thermo-
mechanical shock problem of generalized thermoelasticity
for an infinitely long annular cylinder with variable
thermal conductivity and magnetic field. The governing
Eqs. (32) and (33) are coupled with initial and boundary
conditions. The numerical values of the dependent vari-
ables like displacement u and the mapping of tempera-
ture � are obtained at the interesting points which are
called degrees of freedom. The weak formulations of the
nondimensional governing equations are derived. The set
of independent test functions to consist of the displace-
ment �u and the mapping of temperature �� is prescribed.
The governing equations are multiplied by independent
weighting functions and then are integrated over the spatial
domain with the boundary. Applying integration by parts
and making use of the divergence theorem reduce the order
of the spatial derivatives and allows for the application
of the boundary conditions. The same shape functions are
defined piecewise on the elements. Using the Galerkin pro-
cedure, the unknown fields u and � and the corresponding
weighting functions are approximated by the same shape
functions. The last step towards the finite element dis-
cretization is to choose the element type and the associated
shape functions. Three nodes of quadrilateral elements are
used. The shape function is usually denoted by the let-
ter N and is usually the coefficient that appears in the

interpolation polynomial. A shape function is written for
each individual node of a finite element and has the prop-
erty that its magnitude is 1 at that node and 0 for all other
nodes in that element. We assume that the master element
has its local coordinates in the range �−1� 1. In our case,
the one-dimensional quadratic elements are used, which
given by linear shape functions

N1 =
1
2

1−��� N2 =

1
2

1+��

quadratic shape functions

N1 =
1
2

�2−��� N2 = 1−�2� N3 =

1
2

�2+��

On the other hand, the time derivatives of the unknown
variables have to be determined by Newmark time integra-
tion method with 0�01 as time step.31 In our investigation,
we prepared the programs for finite element method by
using Matlab software. After obtaining � , the temperature
increment � can be obtained by solving Eq. (21).

5. NUMERICAL RESULTS AND DISCUSSION

For purposes of numerical evaluations, the copper material
was chosen. The constants of the material were taken as29

Ko = 386 Km ·m ·K−1 s−3� �t = 1�78×10−5 K−1

�= 8954 kg ·m−3� To = 293 K

J. Comput. Theor. Nanosci. 11, 1–12, 2014 9
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Fig. 4. Continued.
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Fig. 4. Effect of the relaxation times on u, �rr , ��� , �rr and � = �rr + �rr when �1 = 2�o , Ho = 105, k1 =−0�5�

Ce = 383�1 m2 K−1 · s−2� 	= 3�86×1010 kg ·m−1 s−2

�= 7�76×1010 kg ·m−1 s−2� �= 2� b= 0�042

g = 1�61� a= 0�0105

Before going to the analysis the grid independence test
has been conducted and the results are presented in Table I.
The grid size has been refined and consequently the values
of different parameters as observed from Table I get stabi-
lized. Further refinement of mesh size over 9000 elements
does not change the values considerably, which is there-
fore accepted as the grid size for computing purposed.
Figures 1–4, show the variation of variable conduction,

CT, LS and Gl theories, magnetic field and thermal relax-
ation times on u, �= � , �rr , ���� �rr and � = �rr + �rr �
if �1 = 2�o = 0�08, k1 =−0�5� Ho = 105.
From Figure 1, it is clear that the displacement u

increases with the increased values of the radius r and
tends to zero as r tends to infinity; also, it is shown that
u decreases with an increasing of the small values of k1
and increases with the high values of k1. It is obvious that
the temperature � decreases with an increasing of r but
increases with an increasing of k1. The radial and hoop
stresses �rr and ��� increase, decrease and tend to zero as
r tends to infinity also it is clear that the stresses decreases
with the increasing of k1 but the Maxwell radial stress �rr
takes inverse behavior respect to the mechanical stresses
due to the normal direction for the magnetic field on the
motion, it is display also that the total radial stress for the
mechanical and Maxwell stress increases and decreases
with an increasing of r and k1.

From Figure 2, it is seen that GL model is very origin
comparing with CD and LS models for determining the
displacement, temperature and stresses.
From Figure 3, it is concluded that the displacement

u increases for the small values of r with an increasing
of magnetic field Ho, decreases and increasing with the
large values of the radius r and tends to zero as r tends
to infinity, it is obvious that the temperature doesn’t affect

with the variation of the magnetic field. The radial and
hoop stresses �rr and �� increase, decrease and tends to
zero as r tends to infinity also it is clear that the stresses
decreases with the small values of Ho and then increase
and inclined with the large values of the radial r but the
Maxwell radial stress �rr takes inverse behavior respect to
the mechanical stresses also due to the normal direction for
the magnetic field on the motion, it is display also that the
total radial stress for the mechanical and Maxwell stress
increases, decreases and tends to zero with an increasing
of r but decreases with an increasing of Ho.

From Figure 4, it is clear that u increases with an
increasing of r and increases for the small values of r
with an increasing of relaxation times �o and �1, decreases
with the large values of the radius r . The radial and hoop
stresses �rr and ��� increase, decrease and tends to zero
as r tends to infinity also it is shown that the stresses
increases with the small values of the relaxation times and
then decrease and increase with the large values of the
radial r but the Maxwell radial stress �rr and the total
radial stress � for the mechanical and Maxwell stress
decreases, increases and tends to zero as r tends to infin-
ity, it is obvious that �rr increases, decreases and then
increases with the large values of r with the variation of
the relaxation times.

NOMENCLATURE

�t is the interal thermal expansion coefficient,
� = �t (3�+2	),
� is the temperature increment, � = T −

To�

∣∣∣∣T −To
To

∣∣∣∣� 1,

� and 	 are Lame’s constants,
	e is the magnetic permeability,
�ij are the components of stress tensor,
� is the density,
�o and �1 are the relaxation times,

J. Comput. Theor. Nanosci. 11, 1–12, 2014 11
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� is the mapping of �,
Ce is specific heat per unit mass,
eij are the components of strain tensor,
Ho is the constant magnetic field,
�H is the magnetic field vector,
�J is the electric crrent density,
k is the diffusivity,
K is the thermal conductivity,
t is the time,

To is the reference temperature,
ui are components of displacement vector.
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